KRISTALL- UND MOLEKÜLSTRUKTUR VON TRICARBONYL(η⁴-3,4-DIMETHYL-THIOPHEN-1,1-DIOXID)EISEN

K. HOFFMANN und E. WEISS *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D 2 Hamburg 13 (B.R.D.)

(Eingegangen den 27. August 1976)

Summary

A single-crystal X-ray diffraction study of tricarbonyl(η^4 -3,4-dimethylthiophene-1,1-dioxide)iron has been made. Crystal data: space group $P4_12_12$; a = b = 9.307(2), c = 25.462(5) Å; Z = 8. With 950 reflections $[F_o > 3\sigma(F_o)]$ the structure has been refined anisotropically (hydrogens isotropically) to R = 0.026.

In the compound 3,4-dimethylthiophene-1,1-dioxide is coordinated to iron by its diene system analogous to (butadiene)Fe(CO)₃. The sulfur atom is out-ofplane of the butadiene system (26.9°). This fact can be explained by intramolecular repulsion and by coordination effects. The three CO groups are directed towards the centres of greatest electron density in the ring. Hence one CO and the SO₂ group are in eclipsed conformation with a slight deformation due to O-O repulsion of both groups. IR, ¹H NMR, and ¹³C NMR data are reported.

Zusammenfassung

Es wurde eine Einkristall-Röntgenstrukturuntersuchung am Tricarbonyl(η^4 -3,4-dimethyl-thiophen-1,1-dioxid)eisen durchgeführt. Kristalldaten: Raumgruppe $P4_12_12$; a = b = 9.307(2), c = 25.462(5) Å; Z = 8. Die Struktur wurde mit 950 Reflexen [$F_0 > 3\sigma(F_0)$] anisotrop (Wasserstoffatome isotrop) bis zu einem R-Wert von 0.026 verfeinert.

Im Komplex ist der Ligand 3,4-Dimethyl-thiophen-1,1-dioxid durch sein Diensystem analog dem Butadien an eine $Fe(CO)_3$ -Gruppe gebunden. Das S-Atom ist stark aus der Ebene des Butadien-Systems herausgehoben (26.9°); dieser Befund wird durch intramolekulare Abstossung und Koordinationseffekte erklärt. Die drei CO-Gruppen weisen in ihrer Verlängerung auf die Zentren grösster Elektronendichte im Ring. Somit sind eine CO- und die SO₂-Gruppe in verdeckter (eclipsed) Konformation. Eine geringfügige Abweichung hiervon beruht auf der O-O-Abstossung der beiden Gruppen. IR, ¹H-NMR und ¹³C-NMR Daten werden angegeben.

Einführung

Tricarbonyl(η^4 -3,4-dimethyl-thiophen-1,1-dioxid)eisen entsteht durch direkte Umsetzung des Liganden mit Pentacarbonyleisen im Bombenrohr [1]; weitere Verbindungen wurden durch photochemische Synthese erhalten [2]. Bei dem Komplex handelt es sich um eine metallorganische Modellsubstanz mit einfach gebautem cyclischen Liganden, die durch Röntgenstrukturanalyse und spektroskopische Methoden näher charakterisiert werden sollte.

Experimentelles

Die Verbindung kristallisiert aus einer gesättigten Lösung in Benzol/n-Hexan (1:3) beim Abkühlen in kleinen, gelben Rauten. Vermessen wurde ein Kristall mit den Abmessungen $0.2 \times 0.2 \times 0.3 \text{ mm}^3$. Drehkristall-, Weissenberg- und Präzessionsaufnahmen ergeben ein tetragonales Kristallsystem. Auf Grund der Auslöschungsbedingungen : 00l: anwesend nur mit l = 4n; h00: anwesend mit h = 2n; standen die Raumgruppen $P4_12_12$ und $P4_32_12$ zur Auswahl. Da die Friedel-Paare bei der Datenreduktion gemittelt wurden, fiel eine willkürliche Entscheidung für $P4_12_12$. Die Gitterkonstanten und andere kristallographische Daten sind in Tabelle 1 aufgelistet. Der Kristall wurde von $\theta = 2^{\circ}$ bis zu einem maximalen Beugungswinkel $\theta = 25^{\circ}$ wie bereits beschrieben [3] vermessen und die Daten analog reduziert. Dabei wurden 950 symmetrieunabhängige Reflexe $[F_o > 3\sigma(F_o)]$ erhalten. Eine Absorptionskorrektur unterblieb wegen des kleinen μR von 0.3.

Lösung und Verfeinerung der Struktur

Die Atomlagen (ausser Wasserstoff) wurden über dreidimensionale Pattersonund Fourier-Synthesen (Programm FOUR [4]) ermittelt. Verfeinerungsrechnungen der Koordinaten und anisotropen Temperaturfaktoren (Programm ORXFLS3 [5]) mit 950 Reflexen ergaben einen *R*-Wert von 0.037. Anschliessend wurden die Wasserstofflagen einer Differenz-Fourier-Synthese entrommen und

TABELLE 1

KRISTALLDATEN FUR (CH3)2C4H2SO2Fe(CO)3

Summenformel	CoHeFeOsS
Molekulargewicht	284.1 g mol ⁻¹
Raumgruppe	P41212
Linearer Absorptionskoeffizient	16.6 cm ⁻¹
μ(Mo-K _α)	•
Berechnete Dichte	$1.68 \mathrm{g}\mathrm{cm}^{-3}$
Gemessene Dichte	$1.72 \text{ g cm}^{-3} (CCl_4/C_7 H_4 Br_2)$
Moleküle/Zelle	8
Zellkonstanten ^a	
a	9.307(2) Å
Ъ	9.307(2) A
с.	25,462(5) Å
v	2225.7 A ³
	• •

a Messtemperatur 18°C, Mo-Kg X = 0.70926 Å.

isotrop verfeinert. Der abschliessende *R*-Wert betrug 0.026. Das Molekül weist keine höhere Symmetrie auf und stellt damit die asymmetrische Einheit dar.

Beschreibung der Struktur

In den Tabellen 2-7 sind die Koordinaten und Temperaturfaktoren der Atome, interatomaren Abstände, Winkel und besten Ebenen aufgeführt. Die Ermittlung der besten Ebenen erfolgte mit dem Programm TUMEB [6], die der Abstände und Winkel mit ABWI [7]. Die Molekül- und Kristallstruktur sind in Fig. 1 und 2 mittels ORTEP [8] dargestellt; Fig. 3 gibt eine Übersicht über die Bindungslängen im Molekül.

Nach den Ergebnissen der Strukturuntersuchung liegt ein typischer Diolefin-Komplex vor. Die vier C-Atome des Rings bilden eine Ebene; sie haben im Mittel gleiche Abstände zueinander (1.424(4) Å) und sind äquidistant zum Eisenatom (2.068(2) Å).

Sehr stark abgeknickt aus der Ebene des Butadien-Systems ist die SO₂-Gruppe. Die S—C-Bindungen schliessen mit ihren Projektionen auf die beste Ebene der vier Kohlenstoffatome einen Winkel von 26.9° ein; er ist wesentlich grösser als im Tetracarbonyl(benzo[b]thiophen-1,1-dioxid)eisen (6.6°) [9]. Dieser Tatbestand kann durch zwei einander ergänzende Effekte erklärt werden: einerseits durch intramolekulare Abstossung zwischen dem Sauerstoff O(2) der Dioxid-Gruppe und dem Carbonylsauerstoff O(5) (Abstand O(2)—O(5) 3.14 Å), andererseits durch Koordination des Dien-Systems an das Eisen-Atom. Dabei

TABELLE 2 ATOMPARAMETER MIT STANDARDABWEICHUNGEN

Atom	x	у	2	
Fe(1)	0.20821(6)	0.18457(6)	0.23243(2)	
C(5)	0.0306(5)	0.2031(6)	0.2051(2)	
O(5)	0.9197(4)	0.2114(5)	0.1869(2)	
C(6)	0.1645(6)	0.1376(6)	0.2989(2)	
O(6)	0.1397(5)	0.1096(6)	0.3415(1)	
C(7)	0.2346(5)	0.0001(5)	0.2138(2)	
0(7)	0.2550(5)	0.8857(4)	0.2020(1)	
S(1)	0.2557(1)	0.4509(1)	0.1850(1)	
0(1)	0.3619(4)	0.5582(4)	0.1710(1)	
O(2)	0.1108(4)	0.4850(4)	0.1686(1)	
C(1)	0.2648(5)	0.3942(5)	0.2508(2)	
H(1)	0.241(5)	0.455(5)	0.275(2)	
C(2)	0.3851(4)	0.3011(4)	0.2556(2)	
C(22)	0.4708(6)	0.2846(6)	0.3054(2)	
H(21)	0.502(6)	0.185(7)	0.315(2)	
H(22)	0.407(7)	0.303(7)	0.338(2)	
H(23)	0.551(6)	0.344(6)	0.305(2)	
C(3)	0.4137(4)	0.2319(5)	0.2071(2)	
C(33)	0.5346(5)	0.1276(6)	0.1967(2)	
H(31)	0.556(6)	0.068(6)	0.225(2)	
H(32)	0.513(6)	0.053(6)	0.160(2)	
H(33)	0.611(6)	0,179(7)	0.182(2)	
C(4)	0.3109(5)	0.2759(4)	0.1684(1)	
H(4)	0.312(4)	0.245(4)	0.130(1)	

ANISOTROPE TEMPERATURFAKTOREN MIT STANDARDABWEICHUNGEN (X 10⁻⁴)

Der anisotrope Temperaturfaktor ist definiert durch

Atom	βıı	β ₂₂	β 33	β12	P13	P23	
Fe(1)	63(1)	67(1)	9(0)	3(1)	-1(0)	-3(0)	
C(5)	87(6)	87)7)	20(1)	2(6)	-1(2)	-11(2)	
0(5)	83(5)	165(7)	37(1)	6(5)	21(2)	-14(2)	
C(6)	115(7)	117(7)	14(1)	-21(5)	8(2)	2(2)	
0(6)	233(8)	247(9)	13(1)	-35(7)	18(2)	5(2)	
C(7)	103(6)	88(6)	11(1)	-16(5)	2(2)	2(2)	
0(7)	194(7)	73(4)	20(1)	-8(4)	7(2)	-7(1)	
S(1)	95(2)	68(1)	13(0)	12(1)	-7(0)	4(0)	
0(1)	139(5)	74(4)	21(1)		-4(2)	11(1)	
0(2)	112(5)	111(5)	20(1)	35(4)	16(2)	7(2)	
C(1)	94(6)	77(5)	10(1)	4(5)	-3(2)	-6(2)	
C(2)	74(5)	63(5)	11(1)	8(4)	-6(2)	-3(2)	
C(22)	115(7)	108(7)	14(1)	-11(6)	-19(2)	2(2)	
C(3)	66(5)	57(5)	12(1)	-8(4)	0(2)	4(2)	
C(33)	74(6)	94(7)	17(1)	17(5)	5(2)	1(2)	
C(4)	80(5)	71(5)	10(1)	4(4)	-1(2)	2(2)	

 $exp(-\beta_{11}h^2 - \beta_{22}k^2 - \beta_{33}l^2 - 2\beta_{12}hk - 2\beta_{13}hl - 2\beta_{23}kl)$

TABELLE 4

ISOTROPE TEMPERATURFAKTOREN MIT STANDARDABWEICHUNGEN

Atom	B (Å ²)	Atom	B (Å ²)	
	1.1(10)	H(23)	3.2(14)	
H(4)	0.4(8)	H(31)	2.1(12)	
H(21)	3.4(14)	H(32)	3.1(12)	
H(22)	5.9(11)	H(33)	3.2(14)	

TABELLE 5

INTERATOMARE ABSTANDE MIT STANDARDABWEICHUNGEN

Atome	Abstand (Å)	Atome	Abstand (Å)	
Fe(1)-C(1)	2.074(4)	Fe(1)C(2)	2.058(4)	
Fe(1)-C(3)	2,066(4)	Fe(1)-C(4)	2.073(4)	
Fe(1)-S(1)	2.792(1)			
Fe(1)-C(5)	1.802(5)	C(5)O(5)	1.134(6)	
Fe(1)—C(6)	1.795(5)	C(6)-O(6)	1.137(6)	
Fe(1)-C(7)	1.798(5)	C(7)-O(7)	1.123(6)	
S(1)-O(1)	1.450(4)	S(1)O(2)	1.447(4)	
S(1)-C(1)	1.757(5)	S(1)-C(4)	1.760(4)	
C(1)-C(2)	1.421(6)	C(1)-H(1)	0.86(4)	
C(2)C(3)	1.417(6)	C(2)-C(22)	1.506(7)	
C(3)-C(4)	1.434(6)	C(3)-C(33)	1.510(7)	
C(4)-H(4)	1.01(4)			
C(22)-H(21)	1.00(6)	C(22)-H(22)	1.04(6)	
C(22)-H(23)	0.93(6)			••
C(33)-H(31)	0.92(5)	C(33)-H(32)	1.18(5)	- " -
C(33)-H(33)	0.94(6)			

TABELLE 6 WINKEL MIT STANDARDABWEICHUNGEN

Atome	Winkel (°)	
C(1)-Fe(1)-C(2)	40.2(2)	
C(2)-Fe(1)-C(3)	40.2(2)	
C(3)-Fe(1)-C(4)	40.6(2)	
C(4)-Fe(1)-C(1)	71.0(2)	
C(5)-Fe(1)-C(6)	100.3(2)	
C(6)-Fe(1)-C(7)	92.7(2)	
C(7)-Fe(1)-C(5)	96.6(2)	
Fe(1)-C(5)-O(5)	177.9(5)	
Fe(1)-C(6)-O(6)	178.3(5)	
Fe(1)-C(7)-O(7)	178,1(5)	
O(1)_S(1)_O(2)	114.4(2)	
O(2)_S(1)_C(4)	113,9(2)	
O(2)-S(1)-C(1)	112.8(2)	
O(1)-S(1)-C(4)	112.2(2)	
O(1)S(1)C(1)	114.2(2)	
C(4)-S(1)-C(1)	86.4(2)	
S(1)-C(1)-C(2)	107.7(3)	
S(1)-C(1)-H(1)	117(3)	
H(1)-C(1)-C(2)	123(3)	
C(1)-C(2)-C(3)	110.5(4)	
C(1)-C(2)-C(22)	123.5(4)	
C(22)-C(2)-C(3)	125,9(4)	
C(2)-C(3)-C(4)	110.1(4)	
C(2)C(3)C(33)	125.8(4)	
C(33)-C(3)-C(4)	124.0(4)	
C(3)-C(4)-S(1)	107.0(3)	
C(3)-C(4)-H(4)	125(2)	
H(4)-C(4)-S(1)	119(2)	
C(3)—C(33)—H(31)	114(3)	
C(3)-C(33)-H(32)	113(3)	
C(3)—C(33)—H(33)	108(4)	
H(31)—C(33)—H(32)	107(4)	
H(32)-C(33)-H(33)	97(5)	
H(33)—C(33)—H(31)	117(5)	
C(2)-C(22)-H(21)	117(4)	
C(2)—C(22)—H(22)	111(4)	
C(2)C(22)H(23)	110(4)	
H(21)C(22)-H(22)	97(5)	
H(22)—C(22)—H(23)	112(5)	
H(22)C(22)H(23)	112(5)	
H(23)C(22)H(21)	109(5)	

ändert sich der Hybrid-Charakter der Ring-C-Atome von sp^2 nach sp^3 , was eine Abknickung der C-S-Bindung und gleichzeitig deren Verlängerung nach sich zieht. So betragen die C-S- und S-O-Abstände im Dibenzothiophensulfon 1.74 und 1.49 Å; beim Tricarbonyl(η^4 -3,4-dimethylthiophen-1,1-dioxid)eisen beobachtet man eine Längenzunahme der C-S-Bindung auf 1.76 Å und einen verstärkten Mehrfachbindungscharakter der S-O-Bindung (1.45 Å). Legt man eine beste Ebene durch das Eisen-Atom und die SO₂-Gruppe, so stellt man eine relativ starke Verdrillung der SO₂-Gruppe fest; die Atome sind nur annähernd coplanar angeordnet. Der Effekt ist ebenfalls auf die Abstossung zwischen dem Sauerstoff O(2) und dem Carbonylsauerstoff O(5) zurückzuführen. Ein weiteres TABELLE 7

GLEICHUNGEN DER LSQ-EBENEN, ABWEICHUNGEN (Å X 10^{-3}) DER ATOME VON DEN EBENEN UND WINKEL ZWISCHEN DEN EBENEN

Die Gleichungen beziehen sich auf ein orthogonales Koordinatensystem, x', y', z', wobei x' parallel zu a, y' in der ab-Ebene und z' parallel zu c^* liegen

Die die jeweilige LSQ-Ebene definierenden Atome sind mit * markiert

(1) 0.6042 x' + 0.7504 y' - 0.2681 z' - 0.3742 = 0(11) -0.3546 x' - 0.6368 y' + 0.6847 z' + 0.0034 = 0(111) 0.1569 x' - 0.4578 y' - 0.8751 z' + 0.3210 = 0(1V) 0.7035 x' + 0.6842 y' - 0.1923 z' - 0.1325 = 0(V) 0.8116 x' - 0.5643 y' - 0.1514 z' - 0.3696 = 0(V1) 0.5373 x' - 0.0155 y' + 0.8433 z' - 0.5265 = 0

1		II		111		IV		v		VI	
C(1)	3*	Fe(1)	0 *	Fe(1)	2*	C(5)	0*	H(31)	0*	H(21)	0*
C(2)	-4*	C(5)	0*	S(1)	4	C(6)	0	H(32)	0*	H(22)	0
C(3)	4*	0(5)	0*	0(1)	2⁺	C(7)	0'	H(33)	0*	H(23)	0*
C(4)	3*			O(2)	—8 *	0(5)-	584	C(33) —3	68	C(22)3	878
S(1)	796	C(1)111	0	C(1) -1	218	0(6) -	549				
0(1)	2239	C(2) -87	71	C(2)	-752	0(7)-	537				
0(2)	332	C(3)140	0	C(3)	664						
Fe(1)	-1655	C(4)199	97	C(4) 1	190						
C(5)	-2338	S(1)256	51	C(5)	272						
C(6)	-2682	0(1) 379	3	C(6)1	343						
C(7)	-2668	O(2) -257	13	C(7) 1	241						
0(5)	-2779	C(6) 158	32	O(5)	480						
O(6)	-3308	C(7) 68	32	0(6) -2	207						
0(7)	-3272	O(6) 257	1	O(7) -2	2021						
C(22)	23	0(7) 108	7								
C(33)	28										
H(1)	135										
H(4)	52										

Bei den Ebenen II, IV, V, VI handelt es sich um Ebenen, da drei Atome stets eine exakte Ebene bilden.

Ebene I

 $\chi^2 = 3.2$ p = 0.06

Die Atome⁺ liegen in einer Ebene

Ebene III

 $\chi^2 = 22$ p < 0.01

Die Atome* liegen nicht in einer Ebene, die Abweichungen sind jedoch sehr klein (weniger als 0.01 Å)

Winkel zwischen den Ebenen in Grad:

111	151.1	11—111	111.3	I—III	90,8
I–IV	8.1	II—IV	144.8	1V	83.8
I-VI	85.0				

Indiz hierfür ist der Winkel der Schwefeldioxid-Gruppe O(1)-S(1)-O(2) von 114.4° im Gegensatz zu 120° in verschiedenen Sulfonen.

Das Carbonylsystem weist die üblichen Bindungslängen auf (Fe-C 1.798(3) Å; C-O 1.131(4) Å). Auch die geringe Abknickung der Carbonylgruppen (178° statt 180°) ist nicht überraschend. Auffallend sind jedoch die unterschiedlichen Winkel, den die Carbonyl-C-Atome über das Zentralatom miteinander bilden.

Fig. 1. Molekülstruktur von (CH₃)₂C₄H₂SO₂Fe(CO)₃. Die Ellipsoide stellen den Bereich 50% iger Aufenthaltswahrscheinlichkeit des jeweiligen Atoms dar.

> ● F= () 5 () 0 ● C

Fig. 3. Bindungsabstände (CH3)2C4H2SO2Fe(CO)3.

Einerseits ist die gleiche Tendenz wie bei vielen $Fe(CO)_3$ -Komplexen vorhanden: die der SO₂-Einheit benachbarte Carbonylgruppe schliesst mit den beiden anderen grössere Winkel ein als diese untereinander. Zudem lässt sich eine weitere Asymmetrie feststellen; der Winkel zwischen C(5)—Fe(1)—C(6) beträgt 100.3°, der zwischen C(5)—Fe(1)—C(7) nur 96.6°. Dieser Unterschied ist mit den Beobachtungen im Ring zu vereinbaren: die Abstossung der beiden Atome O(5) und O(2) bewirkt ein Ausweichen der Carbonylgruppe (5) zur Gruppe (7) hin.

Bemerkenswert und in Übereinstimmung mit Tricarbonyl(η^4 -cyclopentadienon)eisen [10] ist weiterhin die Anordnung der drei CO-Liganden in Bezug zum Ringsystem. Wie von Sim et al. [11] festgestellt, weisen die Verlängerungen der OC-Fe-Bindungen auf die Zentren grösster Elektronendichte im Ring. Auf Grund der experimentellen Ergebnisse sind dies beim Tricarbonyl(η^4 -3,4-dimethyl-thiophen-1,1-dioxid)eisen die Kohlenstoff-Atome des Butadien-Systems.

IR- und NMR-Spektren

Obwohl Feststoff-IR-Spektren vom Tricarbonyl(η^4 -3,4-dimethyl-thiophen-1,1dioxid)eisen bereits publiziert worden sind [1], wurden diese Werte überprüft und durch Lösungsspektren ergänzt. In Tabelle 8 sind die Ergebnisse zusammengefasst.

Das ¹H-NMR-Spektrum in CDCl₃ [interner Standard TMS (δ 0 ppm); Messfrequenz 60 MHz (Varian EM-360)] zeigt zwei Singuletts im Verhältnis 1 : 3 bei δ 4.19 und 2.25 ppm, die den zwei Ring- und den sechs Methylprotonen in 3,4-Stellung zuzuordnen sind. Die Kerne sind jeweils chemisch und magnetisch äquivalent. Somit bewirkt die im festen Zustand beobachtete Verdrillung der SO₂-Gruppe keine magnetischen Unterschiede zwischen den Ring-Protonen. Verglichen mit den Protonenresonanzen des isomeren Tricarbonyl(η^4 -2,5-dimethylTABELLE 8-

IR-DATEN

Substanz	Wellenzahl (cm ⁻¹) ^a	Phase	
(CH3)2C4H2SO2Fe(CO)3	2080 2025 2000	Et ₂ O	
(CH3)2C4H2SO2Fe(CO)3	2070 2015 1997	KBr	
(CH ₃) ₂ C ₄ H ₂ SO ₂ Fe(CO) ₃ [1]	2080 2028 2008	KBr	
^{<i>u</i>} <i>v</i> (C∓O).			
TABELLE 9			
TABELLE 9 ¹³ C-NMR-DATEN			
TABELLE 9 1 ³ C-NMR-DATEN 	Resonanz δ (ppm) ^a	Lösungsmittel	Temp.
TABELLE 9 ¹³ C-NMR-DATEN Substanz (CH ₃) ₂ C ₄ H ₂ SO ₂ Fe(CO) ₃	Resonanz δ (ppm) ^a 206.7 96.5	Lösungsmittel CDC13	Temp. 30°C

^a Bezogen auf TMS (δ 0 ppm); interner Standard CDCl₃ (δ 75.2 ppm); Messfrequenz 22.63 MHz (Bruker: WH-90).

thiophen-1,1-dioxid)eisens [2] bei δ 5.38 und 1.75 ppm sind infolge des Anisotropie-Effekts der SO₂-Gruppe [12] die 2,5-Positionen stärker als die übrigen abgeschirmt.

Das ¹³C-NMR-Spektrum vom Tricarbonyl(η^4 -3,4-dimethyl-thiophen-1,1dioxid)eisen (Tabelle 9) zeigt vier Singuletts, wobei die bei hohem Feld auftretenden beiden Signale eindeutig eine höhere Intensität besitzen als die bei δ 206.7 und 96.5 ppm (Kern-Overhauser-Effekt). Letztere können damit den nichtwasserstoffsubstituierten C-Atomen zugeordnet werden. Die Resonanz bei δ 206.7 ppm ist typisch für terminale CO-Gruppen in Fe(CO)₃-Komplexen. Da die Methylgruppen am wenigsten durch die Bindung des Thiophendioxids an ein Metall beeinflusst werden, ist ihnen die Resonanz bei δ 14.4 ppm zuzuweisen; bei δ 68.8 ppm erscheinen die H-substituierten Ring-Atome. Entsprechende Lagen der zur funktionellen Gruppe α -ständigen C-Atome werden im ähnlich gebauten Tricarbonyl(η^4 -cyclopentadienon)eisen [10] gefunden. In beiden Fällen werden durch die Koordination an eine Fe(CO)₃-Gruppe die Resonanzen der Ringatome zu höherem Feld verschoben, wenn man zum Vergleich die Werte vom Cyclohexenon heranzieht.

Dank

Für die Vermessung des Kristalls auf dem Einkristall-Diffraktometer danken wir Herrn Dr. J. Kopf. Weiterhin sei der Deutschen Forschungsgemeinschaft für die Bereitstellung eines rechnergesteuerten Vierkreis-Diffraktometers und dem Fond der Chemischen Industrie für Sachmittel gedankt.

Literatur

2 Y.L. Chow, J. Fossey und R.A. Perry, J. Chem. Soc. Chem. Commun., (1972) 501.

¹ E. Weiss und W. Hübel, J. Inorg. Nucl. Chem., 11 (1959) 42.

- 3 U. Behrens, J. Organometal. Chem., 107 (1976) 103.
- 4 J. Kopf, Universität Hamburg, 1973 (unveröff, Programm).
- 5 W.R. Busing, K.O. Martin und H.A. Levy, ORXFLS3, A FORTRAN Crystallographic Least-squares Program, Oak Ridge National Laboratory, 1971.
- 6 G. Huttner und S. Schelle, Universität München (unveröff. Programm).
- 7 U. Behrens und K. Hoffmann, Universität Hamburg, 1973 (unveröff. Programm).
- 8 C.K. Johnson, Report ORNL-3794, Oak Ridge, 1965.
- 9 R. Guilard und Y. Dusausoy, J. Organometal. Chem., 77 (1974) 393.
- 10 K. Hoffmann und E. Weiss, J. Organometal. Chem., 128 (1977) 237.
- 11 O.L. Carter, A.T. McPhail und G.A. Sim, J. Chem. Soc., A, (1968) 1866.
- 12 N.B. Chapman, D.F. Ening, R.M. Scrowston und R. Westwood, J. Chem. Soc. C, (1968) 764.